
Configuring redundant disk arrays is a black art. To configure an array properly, a system
administrator must understand the details of both the array and the workload it will support. Incorrect
understanding of either, or changes in the workload over time, can lead to poor performance.

We present a solution to this problem: a two-level storage hierarchy implemented inside a single disk-
array controller. In the upper level of this hierarchy, two copies of active data are stored to provide
full redundancy and excellent performance. In the lower level,RAID 5 parity protection is used to
provide excellent storage cost for inactive data, at somewhat lower performance.

The technology we describe in this paper, known as HP AutoRAID, automatically and transparently
manages migration of data blocks between these two levels as access patterns change. The result is a
fully redundant storage system that is extremely easy to use, is suitable for a wide variety of
workloads, is largely insensitive to dynamic workload changes, and performs much better than disk
arrays with comparable numbers of spindles and much larger amounts of front-endRAM cache.
Because the implementation of the HP AutoRAID technology is almost entirely in software, the
additional hardware cost for these benefits is very small.

We describe the HP AutoRAID technology in detail, provide performance data for an embodiment of
it in a storage array, and summarize the results of simulation studies used to choose algorithms
implemented in the array.

Categories and Subject Descriptors: B.4.2 [Input/Output and Data Communications]:
Input/Output devices—channels and controllers; B.4.5 [Input/Output and Data
Communications]: Reliability, Testing, and Fault-Tolerance—redundant design; D.4.2 [Operating
Systems]: Storage Management—secondary storage

General Terms: Algorithms, Design, Performance, Reliability

Additional Key Words and Phrases: Disk array,RAID, storage hierarchy

The HP Auto RAID hierarchical
storage system

John Wilkes, Richard Golding, Carl Staelin, and
Tim Sullivan
Hewlett-Packard Laboratories

Author’s addresses: Hewlett-Packard Laboratories, mailstop 1U13, 1501 Page Mill Road, Palo Alto,
CA 94304-1126; email: {wilkes,golding,staelin,sullivan}@hpl.hp.com.
Permission to make digital/hard copy of all or part of this material without fee is granted provided
that the copies are not made or distributed for profit or commercial advantage; the ACM copy-
right/server notice, the title of the publication, and its date appear; and notice is given that copying is
by permission of the Association for Computing Machinery, Inc. (ACM). To copy otherwise, to re-
publish, to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
© 1996 ACM 0734-2071/96/0200-0108 $03.50

1. INTRODUCTION

Modern businesses and an increasing number of individuals depend on the
information stored in the computer systems they use. Even though modern
disk drives have mean-time-to-failure (MTTF) values measured in hundreds of

2 • John Wilkes et al.

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.

years, storage needs have increased at an enormous rate, and a sufficiently
large collection of such devices can still experience inconveniently frequent
failures. Worse, completely reloading a large storage system from backup
tapes can take hours or even days, resulting in very costly downtime.

For small numbers of disks, the preferred method to provide fault protection
is to duplicate (mirror) data on two disks with independent failure modes.
This solution is simple, and it performs well.

However, once the total number of disks gets large, it becomes more cost-
effective to employ an array controller that uses some form of partial
redundancy (such as parity) to protect the data it stores. SuchRAIDs (for
Redundant Arrays of Independent Disks) were first described in the early
1980s [Lawlor 1981; Park and Balasubramanian 1986], and popularized by
the work of a group at UC Berkeley [Patterson et al. 1988; Patterson et al.
1989]. By storing only partial redundancy for the data, the incremental cost
of the desired high availability is reduced to as little as 1/N of the total
storage-capacity cost (where N is the number of disks in the array), plus the
cost of the array controller itself.

The UC BerkeleyRAID terminology has a number of differentRAID levels,
each one representing a different amount of redundancy and a placement rule
for the redundant data. Most disk array products implementRAID level 3 or 5.
In RAID level 3, host data blocks are bit- or byte-interleaved across a set of
data disks, and parity is stored on a dedicated data disk (see Figure 1a). In
RAID level 5, host data blocks are block-interleaved across the disks, and the
disk on which the parity block is stored rotates in round-robin fashion for
different stripes (see Figure 1b). Both hardware and softwareRAID products
are available from many vendors.

Unfortunately, current disk arrays are often difficult to use [Chen and Lee
1993]: the differentRAID levels have different performance characteristics
and perform well only for a relatively narrow range of workloads. To
accommodate this,RAID systems typically offer a great many configuration
parameters: data- and parity-layout choice, stripe depth, stripe width, cache
sizes and write-back policies, and so on. Setting these correctly is difficult: it
requires knowledge of workload characteristics that most people are unable
(and unwilling) to acquire. As a result, setting up aRAID array is often a

Fig. 1. Data and parity layout for two differentRAID levels.

data paritydata parity

a. RAID 3 b. RAID 5

HP AutoRAID hierarchical storage system • 3

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.

daunting task that requires skilled, expensive people and—in too many
cases—a painful process of trial and error.

Making the wrong choice has two costs: the resulting system may perform
poorly; and changing from one layout to another almost inevitably requires
copying data off to a second device, reformatting the array, and then reloading
it. Each step of this process can take hours; it is also an opportunity for
inadvertent data loss through operator error—one of the commonest source of
problems in modern computer systems [Gray 1990].

Adding capacity to an existing array is essentially the same problem: taking
full advantage of a new disk usually requires a reformat and data reload.

SinceRAID 5 arrays suffer reduced performance in “degraded mode”—when
one of the drives has failed—many include a provision for one or more spare
disks that can be pressed into service as soon as an active disk fails. This
allows redundancy reconstruction to commence immediately, thereby
reducing the window of vulnerability to data loss from a second device failure
and also minimizing the duration of the performance degradation. In the
normal case, however, these spare disks are not used, and contribute nothing
to the performance of the system. (There is also the secondary problem of
assuming that a spare disk is still working: because the spare is idle, the array
controller may not find out that it has failed until it is too late.)

1.1 The solution: a managed storage hierarchy

Fortunately, there is a solution to these problems for a great many applications
of disk arrays: a redundancy-level storage hierarchy. The basic idea is to
combine the performance advantages of mirroring with the cost-capacity
benefits ofRAID 5 by mirroring active data and storing relatively inactive or
read-only data inRAID 5.

To make this solution work, part of the data must be active and part inactive
(else the cost-performance would reduce to that of mirrored data), and the
active subset must change relatively slowly over time (to allow the array to
do useful work, rather than just move data between the two levels).
Fortunately, studies on I/O access patterns, disk shuffling, and file-system
restructuring have shown that these conditions are often met in practice
[Akyurek and Salem 1993; Deshpandee and Bunt 1988; Floyd and Schlatter
Ellis 1989; Geist et al. 1994; Majumdar 1984; McDonald and Bunt 1989;
McNutt 1994; Ruemmler and Wilkes 1991; Ruemmler and Wilkes 1993;
Smith 1981].

Such a storage hierarchy could be implemented in a number of different ways:
• Manually, by the system administrator. (This is how large mainframes

have been run for decades. [Gelb 1989] discusses a slightly refined
version of this basic idea.) The advantage of this approach is that human
intelligence can be brought to bear on the problem, and perhaps
knowledge that is not available to the lower levels of the I/O and operating

4 • John Wilkes et al.

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.

systems. However, it is obviously error-prone (the wrong choices can be
made, and mistakes can be made in moving data from one level to
another); it cannot adapt to rapidly changing access patterns; it requires
highly skilled people; and it does not allow new resources (such as disk
drives) to be added to the system easily.

• In the file system, perhaps on a per-file basis. This might well be the best
possible place in terms of a good balance of knowledge (the file system
can track access patterns on a per-file basis) and implementation freedom.
Unfortunately, there are many different file system implementations in
customers’ hands, so deployment is a major problem.

• In a smart array controller, behind a block-level device interface such as
the Small Systems Computer Interface (SCSI) standard [SCSI 1991].
Although this level has the disadvantage that knowledge about files has
been lost, it has the enormous compensating advantage of being easily
deployable—strict adherence to the standard means that an array using
this approach can look just like a regular disk array, or even just a set of
plain disk drives.

Not surprisingly, we are describing an array-controller-based solution here.
We use the name “HP AutoRAID” to refer both to the collection of technology
developed to make this possible and to its embodiment in an array controller.

1.2 Summary of the features of HP AutoRAID

We can summarize the features of HP AutoRAID as follows:

Mapping. Host block addresses are internally mapped to their physical
locations in a way that allows transparent migration of individual blocks.

Mirroring . Write-active data are mirrored for best performance and to provide
single-disk failure redundancy.

RAID 5. Write-inactive data are stored inRAID 5 for best cost-capacity while
retaining good read performance and single-disk failure redundancy. In
addition, large sequential writes go directly toRAID 5 to take advantage of its
high bandwidth for this access pattern.

Adaptation to changes in the amount of data stored. Initially, the array starts
out empty. As data are added, internal space is allocated to mirrored storage
until no more data can be stored this way. When this happens, some of the
storage space is automatically reallocated to theRAID 5 storage class, and data
are migrated down into it from the mirrored storage class. Since theRAID 5
layout is a more compact data representation, more data can now be stored in
the array. This reapportionment is allowed to proceed until the capacity of the
mirrored storage has shrunk to about 10% of the total usable space. (The exact
number is a policy choice made by the implementors of the HP AutoRAID
firmware to maintain good performance.) Space is apportioned in coarse-
granularity 1MB units.

HP AutoRAID hierarchical storage system • 5

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.

Adaptation to workload changes. As the active set of data changes, newly
active data are promoted to mirrored storage, and data that have become less
active are demoted toRAID 5 in order to keep the amount of mirrored data
roughly constant. Because these data movements can usually be done in the
background, they do not affect the performance of the array. Promotions and
demotions occur completely automatically, in relatively fine-granularity
64KB units.

Hot-pluggable disks, fans, power supplies, and controllers.These allow a
failed component to be removed and a new one inserted while the system
continues to operate. Although these are relatively commonplace features in
higher-end disk arrays, they are important in enabling the next three features.

On-line storage capacity expansion.A disk can be added to the array at any
time, up to the maximum allowed by the physical packaging—currently 12
disks. The system automatically takes advantage of the additional space by
allocating more mirrored storage. As time and the workload permit, the active
data are rebalanced across the available drives to even out the workload
between the newcomer and the previous disks—thereby getting maximum
performance from the system.

Easy disk upgrades. Unlike conventional arrays, the disks do not all need to
have the same capacity. This has two advantages: first, each new drive can be
purchased at the optimal capacity/cost/performance point, without regard to
prior selections. Second, the entire array can be upgraded to a new disk type
(perhaps with twice the capacity) without interrupting its operation by
removing one old disk at a time, inserting a replacement disk, and then
waiting for the automatic data reconstruction and rebalancing to complete. To
eliminate the reconstruction, data could first be “drained” from the disk being
replaced: this would have the advantage of retaining continuous protection
against disk failures during this process, but would require enough spare
capacity in the system.

Controller fail-over. A single array can have two controllers, each capable of
running the entire subsystem. On failure of the primary, the operations are
rolled over to the other. A failed controller can be replaced while the system
is active. Concurrently active controllers are also supported.

Active hot spare. The spare space needed to perform a reconstruction can be
spread across all of the disks, and used to increase the amount of space for
mirrored data—and thus the array’s performance—rather than simply being
left idle.

If a disk fails, mirrored data are demoted toRAID 5 to provide the space to
reconstruct the desired redundancy. Once this process is complete, a second
disk failure can be tolerated—and so on, until the physical capacity is entirely
filled with data in theRAID 5 storage class.

Simple administration and setup. A system administrator can divide the
storage space of the array into one or more logical units (LUNs in SCSI

6 • John Wilkes et al.

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.

terminology) to correspond to the logical groupings of the data to be stored.
Creating a newLUN or changing the size of an existingLUN is trivial: it takes
about 10 seconds to go through the front-panel menus, select a size, and
confirm the request. Since the array does not need to be formatted in the
traditional sense, the creation of theLUN does not require a pass over all the
newly allocated space to zero it and initialize its parity, an operation that can
take hours in a regular array. Instead, all that is needed is for the controller’s
data structures to be updated.

Log-structuredRAID 5 writes. A well-known problem ofRAID 5 disk arrays is
the so-called small-write problem. Doing an update-in-place of part of a stripe
takes 4 I/Os: old data and parity have to be read, new parity calculated, and
then new data and new parity written back. HP AutoRAID avoids this
overhead in most cases by writing to itsRAID 5 storage in a log-structured
fashion—that is, only empty areas of disk are written to, so no old-data or old-
parity reads are required.

1.3 Related work

Many papers have been published onRAID reliability, performance, and
design variations for parity placement and recovery schemes (see [Chen et al.
1994] for an annotated bibliography). The HP AutoRAID work builds on many
of these studies: we concentrate here on the architectural issues of using
multiple RAID levels (specifically 1 and 5) in a single array controller.

Storage Technology Corporation’s Iceberg [Ewing 1993; STK 1995] uses a
similar indirection scheme to map logicalIBM mainframe disks (count-key-
data format) onto an array of 5.25”SCSI disk drives [Art Rudeseal, private
communication, Nov. 1994]. Iceberg has to handle variable-sized records; HP
AutoRAID has aSCSI interface and can handle the indirection using fixed-size
blocks. The emphasis in the Iceberg project seems to have been on achieving
extraordinarily high levels of availability; the emphasis in HP AutoRAID has
been on performance once the single-component failure model of regular
RAID arrays had been achieved. Iceberg does not include multipleRAID
storage levels: it simply uses a single-level modifiedRAID 6 storage class
[Dunphy et al. 1991; Ewing 1993].

A team atIBM Almaden has done extensive work in improvingRAID array
controller performance and reliability, and several of their ideas have seen
application in IBM mainframe storage controllers. Their floating parity
scheme [Menon and Kasson 1989; Menon and Kasson 1992] uses an
indirection table to allow parity data to be written in a nearby slot, not
necessarily its original location. This can help to reduce the small-write
penalty of RAID 5 arrays. Their distributed sparing concept [Menon and
Mattson 1992] spreads the spare space across all the disks in the array,
allowing all the spindles to be used to hold data. HP AutoRAID goes further
than either of these: it allows both data and parity to be relocated, and it uses
the distributed spare capacity to increase the fraction of data held in mirrored

HP AutoRAID hierarchical storage system • 7

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.

form, thereby improving performance still further. Some of the schemes
described in [Menon and Courtney 1993] are also used in the dual-controller
version of the HP AutoRAID array to handle controller failures.

The Loge disk drive controller [English and Stepanov 1992], and its follow-
ons Mime [Chao et al. 1992] and Logical Disk [de Jonge et al. 1993], all used
a scheme of keeping an indirection table to fixed-sized blocks held on
secondary storage. None of these supported multiple storage levels, and none
was targeted atRAID arrays. Work on an Extended Function Controller at HP’s
disk divisions in the 1980s looked at several of these issues, but progress
awaited development of suitable controller technologies to make the
approach adopted in HP AutoRAID cost effective.

The log-structured writing scheme used in HP AutoRAID owes an intellectual
debt to the body of work on log-structured file systems (LFS) [Carson and
Setia 1992; Ousterhout and Douglis 1989; Rosenblum and Ousterhout 1992;
Seltzer et al. 1993; Seltzer et al. 1995] and cleaning (garbage-collection)
policies for them [Blackwell et al. 1995; McNutt 1994; Mogi and
Kitsuregawa 1994].

There is a large literature on hierarchical storage systems and the many
commercial products in this domain (for example [Chen 1973; Cohen et al.
1989; DEC 1993; Deshpandee and Bunt 1988; Epoch Systems Inc. 1988;
Gelb 1989; Henderson and Poston 1989; Katz et al. 1991; Miller 1991; Misra
1981; Sienknecht et al. 1994; Smith 1981], together with much of the
proceedings of the IEEE Symposia on Mass Storage Systems). Most of this
work has been concerned with wider performance disparities between the
levels than exist in HP AutoRAID. For example, such systems often use disk
and robotic tertiary storage (tape or magneto-optical disk) as the two levels.

Several hierarchical storage systems have used front-end disks to act as a
cache for data on tertiary storage. In HP AutoRAID, however, the mirrored
storage is not a cache: instead data are moved between the storage classes,
residing in precisely one class at a time. This method maximizes the overall
storage capacity of a given number of disks.

The Highlight system [Kohl et al. 1993] extended LFS to two-level storage
hierarchies (disk and tape) and also used fixed-size segments. Highlight’s
segments were around 1MB in size, however, and therefore were much better
suited for tertiary-storage mappings than for two secondary-storage levels.

Schemes in which inactive data are compressed [Burrows et al. 1992; Cate
1990; Taunton 1991] exhibit some similarities to the storage-hierarchy
component of HP AutoRAID but operate at the file system level rather than at
the block-based device interface.

Finally, like most modern array controllers, HP AutoRAID takes advantage of
the kind of optimizations noted in [Baker et al. 1991; Ruemmler and Wilkes
1993] that become possible with nonvolatile memory.

8 • John Wilkes et al.

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.

1.4 Roadmap to remainder of paper

The remainder of the paper is organized as follows. We begin with an
overview of the technology: how an HP AutoRAID array controller works.
Next come two sets of performance studies. The first is a set of measurements
of a product prototype; the second a set of simulation studies used to evaluate
algorithm choices for HP AutoRAID. Finally, we conclude the paper with a
summary of the benefits of the technology.

2. THE TECHNOLOGY

This section of the paper introduces the basic technologies used in HP
AutoRAID. It starts with an overview of the hardware, then discusses the
layout of data on the disks of the array, including the structures used for
mapping data blocks to their locations on disk. This is followed by brief
descriptions of normal read and write operations to illustrate the flow of data
through the system, and then by a series of operations that are (usually)
performed in the background, to ensure that the performance of the system
remains high over long periods of time.

2.1 The HP AutoRAID array controller hardware

An HP AutoRAID array is fundamentally similar to a regularRAID array. That
is, it has a set of disks, an intelligent controller that incorporates a
microprocessor, mechanisms for calculating parity, caches for staging data
(some of which are nonvolatile), a connection to one or more host computers,
and appropriate speed-matching buffers. Figure 2 is an overview of this
hardware.

The hardware prototype for which we provide performance data uses four
back-endSCSI buses to connect to its disks, and one or two fast-wideSCSI
buses for its front-end host connection. Many other alternatives exist for
packaging this technology, but are outside the scope of this paper.

The array presents one or moreSCSI logical units (LUNs) to its hosts. Each of
these is treated as a virtual device inside the array controller: their storage is
freely intermingled. ALUN’s size may be increased at any time (subject to
capacity constraints). Not every block in aLUN must contain valid data—if
nothing has been stored at an address, the array controller need not allocate
any physical space to it.

2.2 Data layout

Much of the intelligence in an HP AutoRAID controller is devoted to managing
data placement on the disks. A two-level allocation scheme is used.

2.2.1Physical data layout:PEGs,PEXes, and segments.First, the data space
on the disks is broken up into large-granularity objects called Physical
EXtents (PEXes), as shown in Figure 3.PEXes are typically 1MB in size.

HP AutoRAID hierarchical storage system • 9

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.

SeveralPEXes can be combined to make a Physical Extent Group (PEG). In
order to provide enough redundancy to make it usable by either the mirrored
or theRAID 5 storage class, aPEG includes at least threePEXes on different
disks. At any given time, aPEG may be assigned to the mirrored storage class
or theRAID 5 storage class, or may be unassigned, so we speak of mirrored,
RAID 5, and freePEGs. (Our terminology is summarized in Table 1.)

PEXes are allocated toPEGs in a manner that balances the amount of data on
the disks (and thereby, hopefully, the load on the disks) while retaining the
redundancy guarantees (no twoPEXes from one disk can be used in the same
stripe, for example). Because the disks in an HP AutoRAID array can be of
different sizes, this allocation process may leave uneven amounts of free
space on different disks.

Table 1: a summary of HP AutoRAID data-layout terminology.

Term Meaning Size
PEX (physical extent) unit of physical space allocation 1MB

PEG (physical extent group) a group of PEXes, assigned to one
storage class

depends on
number of disks

stripe one row of parity and data
segments in a RAID 5 storage class

depends on
number of disks

segment stripe unit (RAID 5) or half of a
mirroring unit

128KB

RB (relocation block) unit of data migration 64KB

LUN (logical unit) host-visible virtual disk user-settable

10 MB/s
SCSI

buses

parity logic

NVRAM
write cache

other
RAM

speed
matching

RAM

20 MB/s
SCSI

processor,
RAM &

control logic

host
processor

SCSI
controller

SCSI
controllers

2 x 10 MB/s bus

Fig. 2. Overview of HP AutoRAID hardware.

DRAM
read cache

10 • John Wilkes et al.

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.

Segments are the units of contiguous space on a disk that are included in a
stripe or mirrored pair; eachPEX is divided into a set of 128KB segments. As
Figure 4 shows, mirrored andRAID 5 PEGs are divided into segments in
exactly the same way, but the segments are logically grouped and used by the
storage classes in different ways: inRAID 5, a segment is the stripe unit; in the
mirrored storage class, a segment is the unit of duplication.

2.2.2Logical data layout:RBs.The logical space provided by the array—that
visible to its clients—is divided into relatively small 64KB units called
Relocation Blocks (RBs). These are the basic units of migration in the system.
When aLUN is created or is increased in size, its address space is mapped onto
a set ofRBs. An RB is not assigned space in a particularPEG until the host
issues a write to aLUN address that maps to theRB.

The size of anRB is a compromise between data layout, data migration, and
data access costs. SmallerRBS require more mapping information to record
where they have been put, and also increase the fraction of logically
sequential accesses that is devoted to disk seek and rotational delays. Larger
RBs will increase migration costs if only small amounts of data are updated in
eachRB. We report on our exploration of the relationship betweenRB size and
performance in section 4.1.2.

EachPEG can hold manyRBs, the exact number being a function of thePEG’s
size and its storage class. Currently unusedRB slots in aPEG are marked free
until they have anRB (i.e., data) allocated to them.

2.2.3Mapping structures.A subset of the overall mapping structures are
shown in Figure 5. These data structures are optimized for looking up the
physical disk address of anRB, given its logical (LUN-relative) address, since
that is the most common operation. In addition, data are held about access

Disk addresses

Fig. 3. Mapping ofPEGs andPEXes onto disks (adapted from [Burkes et al. 1995]).

Disks

PEGs

PEXes

HP AutoRAID hierarchical storage system • 11

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.

times and history, the amount of free space in eachPEG (for cleaning and
garbage-collection purposes), and various other statistics. Not shown are
various back pointers that allow additional scans.

2.3 Normal operations

To start a host-initiated read or write operation, the host sends aSCSI
Command Descriptor Block (CDB) to the HP AutoRAID array, where it is
parsed by the controller. Up to 32CDBs may be active at a time. An additional
2,048CDBs may be held in aFIFO queue waiting to be serviced; above this
limit, requests are queued in the host. Long requests are broken up into 64KB
pieces, which are handled sequentially; this method limits the amount of
controller resources a single I/O can consume at minimal performance cost.

If the request is a read and the data are completely in the controller’s cache
memories, the data are transferred to the host via the speed-matching buffer,
and the command then completes once various statistics have been updated.
Otherwise, space is allocated in the front-end buffer cache, and one or more
read requests are dispatched to the back-end storage classes.

Writes are handled slightly differently, because the nonvolatile front-end
write buffer (NVRAM) allows the host to consider the request complete as soon
as a copy of the data has been made in this memory. First a check is made to
see if any cached data need invalidating, and then space is allocated in the
NVRAM. This allocation may have to wait until space is available; in doing so,

disk 0 disk 1 disk 2 disk 3 disk 4

0

17’ 18 18’ 19 19’

3’ 4 4’32’

0’ 1 1’ 2

physical extents
(PEXes) on disk 1
(each column
shown is a PEX)

physical extent
groups (PEGs)

each segment
contains slots for
two relocation
blocks (RBs)

segment

Fig. 4. Layout of twoPEGs:
one mirrored and oneRAID 5.
EachPEG is spread out across
five disks. TheRAID 5 PEG
uses segments from all five
disks to assemble each of its
stripes; the mirroredPEG uses
segments from two disks to
form mirrored pairs.

disk 0 disk 1 disk 2 disk 3 disk 4

0

28 P7 29 30 31

5 6 74P1

1 2 3 P0segment

stripe

mirrored
 pair

Mirrored PEG

RAID 5 PEG

12 • John Wilkes et al.

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.

it will usually trigger a flush of existing dirty data to a back-end storage class.
The data are transferred into theNVRAM from the host, and the host is then
told that the request is complete. Depending on theNVRAM cache-flushing
policy, a back-end write may be initiated at this point. More often, nothing is
done, in the hope that another subsequent write can be coalesced with this one
to increase efficiency.

Flushing data to a back-end storage class simply causes a back-end write of
the data if they are already in the mirrored storage class. Otherwise, the flush
will usually trigger a promotion of theRB from RAID 5 to mirrored. (There are
a few exceptions that we describe later.) This promotion is done by calling the
migration code, which allocates space in the mirrored storage class and copies
theRB from RAID 5. If there is no space in the mirrored storage class (because
the background daemons have not had a chance to run, for example), this may
in turn provoke a demotion of some mirrored data down toRAID 5. There are
some tricky details involved in ensuring that this cannot in turn fail—in brief,
the free-space management policies must anticipate the worst-case sequence
of such events that can arise in practice.

2.3.1Mirrored reads and writes.Reads and writes to the mirrored storage
class are straightforward: a read call picks one of the copies and issues a
request to the associated disk. A write call causes writes to two disks; it
returns only when both copies have been updated. Note that this is a back-end

Virtual device tables :
One per LUN. List of RBs
and pointers to the PEGs
in which they reside.

PEG tables : one per
PEG. Holds list of RBs
in PEG and list of
PEXes used to store
them.

PEX tables : one per physical disk drive

Fig. 5. Structure of the tables that map from addresses in virtual volumes toPEGs,PEXes, and physical
disk addresses (simplified).

HP AutoRAID hierarchical storage system • 13

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.

write call that is issued to flush data from theNVRAM, and is not synchronous
with the host write.

2.3.2RAID 5 reads and writes.Back-end reads to theRAID 5 storage class are
as simple as for the mirrored storage class: in the normal case, a read is issued
to the disk that holds the data. In the recovery case, the data may have to be
reconstructed from the other blocks in the same stripe. (The usualRAID 5
recovery algorithms are followed in this case, so we will not discuss the
failure case more in this paper. Although they are not implemented in the
current system, techniques such as parity declustering [Holland and Gibson,
1992] could be used to improve recovery-mode performance.)

Back-endRAID 5 writes are rather more complicated, however.RAID 5 storage
is laid out as a log: that is, freshly demotedRBs are appended to the end of a
“currentRAID 5 writePEG,” overwriting virgin storage there. Such writes can
be done in one of two ways: per-RB writes or batched writes. The former are
simpler, the latter more efficient.

• Forper-RB writes, as soon as anRB is ready to be written, it is flushed to
disk. Doing so causes a copy of its contents to flow past the parity-
calculation logic, whichXORs it with its previous contents—the parity for
this stripe. Once the data have been written, the parity can also be written.
The prior contents of the parity block are stored in non-volatile memory
during this process to protect against power failure. With this scheme,
each data-RB write causes two disk writes: one for the data, one for the
parity RB. This scheme has the advantage of simplicity, at the cost of
slightly worse performance.

• Forbatched writes, the parity is written only after all the dataRBs in a
stripe have been written, or at the end of a batch. If, at the beginning of a
batched write, there are already valid data in thePEG being written, the
prior contents of the parity block are copied to nonvolatile memory along
with the index of the highest-numberedRB in thePEG that contains valid
data. (The parity was calculated byXORing onlyRBs with indices less than
or equal to this value.)RBs are then written to the data portion of the stripe
until the end of the stripe is reached or the batch completes; at that point,
the parity is written. The new parity is computed on the fly by the parity
calculation logic as each dataRB is being written. If the batched write fails
to complete for any reason, the system is returned to its pre-batch state by
restoring the old parity andRB index, and the write is retried using the per-
RB method.
Batched writes require a bit more coordination than per-RB writes, but
require only one additional parity write for each full stripe of data that is
written. MostRAID 5 writes are batched writes.

In addition to these logging write methods, the method typically used in non-
logging RAID 5 implementations (read-modify-write) is also used in some
cases. This method, which reads old data and parity, modifies them, and

14 • John Wilkes et al.

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.

rewrites them to disk, is used to allow forward progress in rare cases when no
PEG is available for use by the logging write processes. It is also used when it
is better to update data (orholes; see section 2.4.1) in place inRAID 5 than to
migrate anRB into mirrored storage, such as in background migrations when
the array is idle.

2.4 Background operations

In addition to the foreground activities described above, the HP AutoRAID
array controller executes many background activities such as garbage
collection and layout balancing. These background algorithms attempt to
provide “slack” in the resources needed by foreground operations so that the
foreground never has to trigger a synchronous version of these background
tasks, since these can dramatically reduce performance.

The background operations are triggered when the array has been “idle” for a
period of time. “Idleness” is defined by an algorithm that looks at current and
past device activity—the array does not have to be completely devoid of
activity. When an idle period is detected, the array performs one set of
background operations. Each subsequent idle period, or continuation of the
current one, triggers another set of operations.

After a long period of array activity, the current algorithm may need a
moderate amount of time to detect that the array is idle. We hope to apply
some of the results from [Golding et al. 1995] to improve idle-period
detection and prediction accuracy, which will in turn allow us to be more
aggressive about executing background algorithms.

2.4.1Compaction: cleaning and hole-plugging.The mirrored storage class
acquiresholes, or emptyRB slots, whenRBs are demoted to theRAID 5 storage
class. (Since updates to mirroredRBs are written in place, they generate no
holes.) These holes are added to a free list in the mirrored storage class and
may subsequently be used to contain promoted or newly createdRBs. If a new
PEG is needed for theRAID 5 storage class, and no freePEXes are available, a
mirroredPEG may be chosen forcleaning: all the data are migrated out to fill
holes in other mirroredPEGs, after which thePEG can be reclaimed and
reallocated to theRAID 5 storage class.

Similarly, theRAID 5 storage class acquires holes whenRBs are promoted to
the mirrored storage class, usually because theRBs have been updated.
Because the normalRAID 5 write process uses logging, the holes cannot be
reused directly; we call themgarbage, and the array needs to perform a
periodicgarbage collection to eliminate them.

If the RAID 5 PEG containing the holes is almost full, the array performshole-
plugging garbage collection.RBs are copied from aPEG with a small number
of RBs and used to fill in the holes of an almost-fullPEG. This minimizes data
movement if there is a spread of fullness across thePEGs, which is often the
case.

HP AutoRAID hierarchical storage system • 15

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.

If the PEG containing the holes is almost empty and there are no other holes to
be plugged, the array doesPEG cleaning: that is, it appends the remaining
valid RBs to the current end of theRAID 5 write log and reclaims the complete
PEG as a unit.

2.4.2Migration: moving RBs between levels.A background migration policy
is run to moveRBs from mirrored storage toRAID 5. This is done primarily to
provide enough emptyRB slots in the mirrored storage class to handle a future
write burst. As [Ruemmler and Wilkes 1993] showed, such bursts are quite
common.

RBs are selected for migration by an approximate Least-Recently-Written
algorithm. Migrations are performed in the background until the number of
freeRB slots in the mirrored storage class or freePEGs exceeds a high-water
mark that is chosen to allow the system to handle a burst of incoming data.
This threshold can be set to provide better burst-handling at the cost of
slightly lower out-of-burst performance. The current AutoRAID firmware uses
a fixed value, but the value could also be determined dynamically.

2.4.3Balancing: adjusting data layout across drives.When new drives are
added to an array, they contain no data and therefore do not contribute to the
system’s performance.Balancing is the process of migratingPEXes between
disks to equalize the amount of data stored on each disk, and thereby also the
request load imposed on each disk. Access histories could be used to balance
the disk load more precisely, but this is not currently done. Balancing is a
background activity, performed when the system has little else to do.

Another type of imbalance results when a new drive is added to an array:
newly createdRAID 5 PEGS will use all of the drives in the system to provide
maximum performance, but previously createdRAID 5 PEGS will continue to
use only the original disks. This imbalance is corrected by another low-
priority background process that copies the valid data from the oldPEGS to
new, full-widthPEGS.

2.5 Workload logging

One of the uncertainties we faced while developing the HP AutoRAID design
was the lack of a broad range of real system workloads at the disk I/O level
that had been measured accurately enough for us to use in evaluating its
performance.

To help remedy this in the future, the HP AutoRAID array incorporates an I/O
workload logging tool. When the system is presented with a specially
formatted disk, the tool records the start and stop times of every externally
issued I/O request. Other events can also be recorded, if desired. The
overhead of doing this is very small: the event logs are first buffered in the
controller’s RAM and then written out in large blocks. The result is a faithful
record of everything the particular unit was asked to do, which can be used to
drive simulation design studies of the kind we describe later in this paper.

16 • John Wilkes et al.

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.

2.6 Management tool

The HP AutoRAID controller maintains a set of internal statistics, such as
cache utilization, I/O times, and disk utilizations. These statistics are
relatively cheap to acquire and store, and yet can provide significant insight
into the operation of the system.

The product team developed an off-line, inference-based management tool
that uses these statistics to suggest possible configuration choices. For
example, the tool is able to determine that for a particular period of high load,
performance could have been improved by adding cache memory because the
array controller was short of read cache. Such information allows
administrators to maximize the array’s performance in their environment.

3. HP AutoRAID PERFORMANCE RESULTS

A combination of prototyping and event-driven simulation was used in the
development of HP AutoRAID. Most of the novel technology for HP AutoRAID
is embedded in the algorithms and policies used to manage the storage
hierarchy. As a result, hardware and firmware prototypes were developed
concurrently with event-driven simulations that studied design choices for
algorithms, policies, and parameters to those algorithms.

The primary development team was based at the product division that
designed, built, and tested the prototype hardware and firmware. They were
supported by a group at HP Laboratories that built a detailed simulator of the
hardware and firmware and used it to model alternative algorithm and policy
choices in some depth. This organization allowed the two teams to
incorporate new technology into products in the least possible time while still
fully investigating alternative design choices.

In this section we present measured results from a laboratory prototype of a
disk array product that embodies the HP AutoRAID technology. In section 4
we present a set of comparative performance analyses of different algorithm
and policy choices that were used to help guide the implementation of the real
thing.

3.1 Experimental setup

The baseline HP AutoRAID configuration on which we report was a 12-disk
system with one controller and 24MB of controller data cache. It was
connected via two fast-wide differentialSCSI adapters to an HP 9000/K400
system with one processor and 512MB of main memory running release 10.0
of theHP-UX operating system [Clegg et al. 1986]. All the drives used were
2.0GB 7,200RPM Seagate ST32550 Barracudas with immediate write
reporting turned off.

To calibrate the HP AutoRAID results against external systems, we also took
measurements on two other disk subsystems. These measurements were

HP AutoRAID hierarchical storage system • 17

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.

taken on the same host hardware, on the same days, with the same host
configurations, number of disks, and type of disks:

• A Data General CLARiiON® Series 2000 Disk-Array Storage System
Deskside Model 2300 with 64MB front-end cache. (We refer to this
system as “RAID array.”) This array was chosen because it is the
recommended third-partyRAID array solution for one of the primary
customers of the HP AutoRAID product.
Because the CLARiiON supports only one connection to its host, only
one of the K400’s fast-wide differentialSCSI channels was used. The
single channel was not, however, the bottleneck of the system.The array
was configured to useRAID 5. (Results forRAID 3 were never better than
for RAID 5.)

• A set of directly-connected individual disk drives. This solution provides
no data redundancy at all. TheHP-UX Logical Volume Manager (LVM)
was used to stripe data across these disks in 4MB chunks. Unlike HP
AutoRAID and theRAID array, the disks had no central controller and
therefore no controller-level cache. We refer to this configuration as
“JBOD-LVM ” (Just a Bunch Of Disks).

3.2 Performance results

We begin by presenting some database macro-benchmarks in order to
demonstrate that HP AutoRAID provides excellent performance for real-world
workloads. Such workloads often exhibit behaviors such as burstiness that are
not present in simpleI/O rate tests; relying only on the latter can provide a
misleading impression of how a system will behave in real use.

3.2.1Macro-benchmarks.An OLTP database workload made up of medium-
weight transactions was run against the HP AutoRAID array, the regularRAID
array, andJBOD-LVM . The database used in this test was 6.7GB, which allowed
it to fit entirely in mirrored storage in the HP AutoRAID; working set sizes
larger than available mirrored space are discussed below. For this benchmark,
the RAID array’s 12 disks were spread evenly across its 5SCSI channels, the
64MB cache was enabled, the cache page size was set to 2KB (the optimal
value for this workload), and the default 64KB stripe-unit size was used.
Figure 6a shows the result: HP AutoRAID significantly outperforms theRAID
array and has performance about three-fourths that ofJBOD-LVM . These
results suggest that the HP AutoRAID is performing much as expected:
keeping the data in mirrored storage means that writes are faster that theRAID
array, but not as fast asJBOD-LVM . Presumably reads are being handled about
equally well by all the cases.

Figure 6b shows HP AutoRAID’s performance when data must be migrated
between mirrored storage andRAID 5 because the working set is too large to
be contained entirely in the mirrored storage class. The same type ofOLTP
database workload as described above was used, but the database size was set

18 • John Wilkes et al.

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.

to 8.1GB. This would not fit in a 5-drive HP AutoRAID system, so we started
with a 6-drive system as the baseline. Mirrored storage was able to
accommodate one-third of the database in this case; two-thirds in the 7-drive
system; almost all in the 8-drive system; and all of it in larger systems.

The differences in performance between the 6-, 7-, and 8-drive systems were
due primarily to differences in the number of migrations performed, while the
differences in the larger systems result from having more spindles across
which to spread the same amount of mirrored data. The 12-drive
configuration was limited by the host K400’sCPU speed and performed about
the same as the 11-drive system. From these data we see that even for this
database workload, which has a fairly random access pattern across a large
data set, HP AutoRAID performs within a factor of two of its optimum when
only one-third of the data is held in mirrored storage, and at about three-
fourths of its optimum when two-thirds of the data are mirrored.

3.2.2Micro-benchmarks.In addition to the database macro-benchmark, we
also ran some micro-benchmarks that used a synthetic workload-generation
program known asDB to drive the arrays to saturation; the working-set size
for the random tests was 2GB. These measurements were taken under slightly
different conditions from the ones reported in section 3.1:

• The HP AutoRAID contained 16MB of controller data cache.
• An HP 9000/897 was the host for all the tests.

RAID array AutoRAID JBOD-LVM
0.0

0.5

1.0

1.5

2.0

2.5

T
ra

ns
ac

tio
n

ra
te

 r
el

at
iv

e
to

 R
A

ID
 a

rr
ay (a) Comparison of HP AutoRAID and non-RAID drives

with a regularRAID array. Both systems used 12 drives,
and the entire 6.7GB database fit inRAID 1 in HP
AutoRAID.

Fig. 6.OLTP macro-benchmark results.

(b) Performance of HP AutoRAID when different
numbers of drives are used. The fraction of the 8.1GB
database held in mirrored storage was: 1/3 in the 6-
drive system; 2/3 in the 7-drive system; nearly all in
the 8-drive system; all in the larger systems.

6 7 8 9 10 11 12

Number of drives

0.0

0.5

1.0

1.5

2.0

T
ra

ns
ac

tio
n

ra
te

 r
el

at
iv

e
to

 6
-d

riv
e

sy
st

em

HP AutoRAID hierarchical storage system • 19

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.

• A single fast-wide differentialSCSI channel was used for the HP
AutoRAID andRAID array tests.

• TheJBOD case did not useLVM , so did not do any striping. (Given the
nature of the workload, this was probably immaterial.) In addition, 11
JBOD disks were used rather than 12 to match the amount of space
available for data in the other configurations. Finally, theJBOD test used
a fast-wide, single-endedSCSI card that required more hostCPUcycles per
I/O. We believe that this did not affect the micro-benchmarks because they
were notCPU limited.

• TheRAID array used 8KB cache pages, and cache on or off as noted.

Data from the micro benchmarks are provided in Figure 7. This shows the
relative performance of the two arrays andJBOD for random and sequential
reads and writes.

The random 8KB read-throughput test is primarily a measure of controller
overheads. HP AutoRAID performance is roughly midway between theRAID
array with its cache disabled andJBOD. It would seem that the cache searching
algorithm of theRAID array is significantly limiting its performance, given
that the cache hit rate would have been close to zero in these tests.

The random 8KB write-throughput test is primarily a test of the low-level
storage system used since the systems are being driven into a disk-limited

AutoRAID RAID RAID
(no cache)

JBOD
0

1

2

3

4

5

M
eg

ab
yt

es
 p

er
 s

ec
on

d

AutoRAID RAID RAID
(no cache)

JBOD
0

1

2

3

4

5

M
eg

ab
yt

es
 p

er
 s

ec
on

d

AutoRAID RAID RAID
(no cache)

JBOD
0

200

400

600

800

I/O
s

pe
r

se
co

nd

AutoRAID RAID RAID
(no cache)

JBOD
0

200

400

600

800

I/O
s

pe
r

se
co

nd

random 8k reads

sequential 64k reads

random 8k writes

sequential 64k writes

Fig. 7. Micro-benchmark comparisons of HP AutoRAID, a regularRAID array, and non-RAID drives.

20 • John Wilkes et al.

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.

behavior by the benchmark. As expected, there is about a 1:2:4 ratio in I/Os
per second forRAID 5 (4 I/Os for a small update): HP AutoRAID (2 I/Os to
mirrored storage):JBOD (1 write in place).

The sequential 64KB read-bandwidth test shows that the use of mirrored
storage in HP AutoRAID can largely compensate for controller overhead and
deliver performance comparable to that ofJBOD.

Finally, the sequential 64kb write-bandwidth test illustrates HP AutoRAID’s
ability to stream data to disk through itsNVRAM cache: its performance is
better than the pureJBOD solution.

We do not have a good explanation for the relatively poor performance of the
RAID array in the last two cases; the results shown are the best obtained from
a number of different array configurations. Indeed, the results demonstrated
the difficulties involved in properly configuring aRAID array: many
parameters were adjusted (caching on or off, cache granularity, stripe depth,
and data layout), and no single combination performed well across the range
of workloads examined.

3.2.3Thrashing.As we noted in section 1.1, the performance of HP AutoRAID
depends on the working-set size of the applied workload. With the working
set within the size of the mirrored space, performance is very good, as shown
by Figure 6a and Figure 7. And as Figure 6b shows, good performance can
also be obtained when the entire working set does not fit in mirrored storage.

If the active write working-set exceeds the size of mirrored storage for long
periods of time, however, it is possible to drive the HP AutoRAID array into a
thrashing mode in which each update causes the targetRB to be promoted up
to the mirrored storage class, and a second one demoted toRAID 5. An HP
AutoRAID array can usually be configured to avoid this by adding enough
disks to keep all the write-active data in mirrored storage. Ifall the data were
write-active, the cost-performance advantages of the technology would, of
course, be reduced. Fortunately, it is fairly easy to predict or detect the
environments that have a large write working-set and to avoid them if
necessary. If thrashing does occur, HP AutoRAID detects it and reverts to a
mode in which it writes directly toRAID 5—that is, it automatically adjusts its
behavior so that performance is no worse than that ofRAID 5.

4. SIMULATION STUDIES

In this section, we will illustrate several design choices that were made inside
the HP AutoRAID implementation using a trace-driven simulation study.

Our simulator is built on the Pantheon [Cao et al. 1994; Golding et al. 1994]
simulation framework,1 which is a detailed, trace-driven simulation
environment written in C++. Individual simulations are configured from the

1 The simulator was formerly called TickerTAIP, but we have changed its name to avoid confusion
with the parallelRAID array project of the same name [Cao et al. 1994].

HP AutoRAID hierarchical storage system • 21

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.

set of available C++ simulation objects using scripts written in the Tcl
language [Ousterhout 1994] and configuration techniques described in
[Golding et al. 1994]. The disk models used in the simulation are improved
versions of the detailed, calibrated models described in [Ruemmler and
Wilkes 1994].

The traces used to drive the simulations are from a variety of systems,
including:cello, a time-sharing HP 9000 Series 800HP-UX system;snake, an
HP 9000 Series 700HP-UX cluster file server;OLTP, an HP 9000 Series 800HP-
UX system running a database benchmark made up of medium-weight
transactions (not the system described in section 3.1); a personal workstation;
and a Netware server. We also used subsets of these traces, such as the/usr
disk fromcello, a subset of the database disks fromOLTP, and theOLTP log disk.
Some of them were for long time periods (up to three months), although most
of our simulation runs used two-day subsets of the traces. All but the Netware
trace contained detailed timing information to 1µs resolution. Several of them
are described in considerable detail in [Ruemmler and Wilkes 1993].

We modeled the hardware of HP AutoRAID using Pantheon components
(caches, buses, disks, etc.) and wrote detailed models of the basic firmware
and of several alternative algorithms or policies for each of about forty design
experiments. The Pantheon simulation core comprises about 46k lines of C++
and 8k lines of Tcl, and the HP-AutoRAID-specific portions of the simulator
added another 16k lines of C++ and 3k lines of Tcl.

Because of the complexity of the model and the number of parameters,
algorithms, and policies that we were examining, it was impossible to explore
all combinations of the experimental variables in a reasonable amount of
time. We chose instead to organize our experiments into baseline runs and
runs with one or a few related changes to the baseline. This allowed us to
observe the performance effects of individual or closely related changes and
to perform a wide range of experiments reasonably quickly. (We used a
cluster of 12 high-performance workstations to run the simulations; even so,
executing all of our experiments took about a week of elapsed time.)

We performed additional experiments to combine individual changes that we
suspected might strongly interact (either positively or negatively) and to test
the aggregate effect of a set of algorithms that we were proposing to the
product development team.

No hardware implementation of HP AutoRAID was available early in the
simulation study, so we were initially unable to calibrate our simulator
(except for the disk models). Because of the high level of detail of the
simulation, however, we were confident thatrelative performance differences
predicted by the simulator would be valid even ifabsolute performance
numbers were not yet calibrated. We therefore used the relative performance
differences we observed in simulation experiments to suggest improvements
to the team implementing the product firmware, and these are what we present

22 • John Wilkes et al.

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.

here. In turn, we updated our baseline model to correspond to the changes
they made to their implementation.

Since there are far too many individual results to report here, we have chosen
to describe a few that highlight some of the particular behaviors of the HP
AutoRAID system.

4.1 Disk speed

Several experiments measured the sensitivity of the design to the size or
performance of various components. For example, we wanted to understand
whether faster disks would be cost-effective. The baseline disks held 2GB and
spun at 5,400RPM. We evaluated four variations of this disk: spinning at
6,400RPM and 7,200RPM, keeping either the data density (bits per inch) or
transfer rate (bits per second) constant. As expected, increasing the back-end
disk performance generally improves overall performance, as shown in
Figure 8. The results suggest that improving transfer rate is more important
than improving rotational latency.

4.2 RB size

The standard AutoRAID system uses 64KB RBs as the basic storage unit. We
looked at the effect of using smaller and larger sizes. For most of the
workloads (see Figure 8), the 64KB size was the best of the ones we tried: the
balance between seek and rotational overheads versus data movement costs
is about right. (This is perhaps not too surprising: the disks we are using have
track sizes of around 64KB, and transfer sizes in this range will tend to get
much of the benefit from fewer mechanical delays.)

Fig. 8. Effects of disk spin speed andRB size on performance.

disk spin speed RB size

0 20 40 60 80 100

Percent improvement versus 5400 RPM disks

6400 (const bit rate)
6400 (const density)
7200 (const bit rate)
7200 (const density)

cello-usr
6400 (const bit rate)
6400 (const density)
7200 (const bit rate)
7200 (const density)

oltp-log
6400 (const bit rate)
6400 (const density)
7200 (const bit rate)
7200 (const density)

oltp-db
6400 (const bit rate)
6400 (const density)
7200 (const bit rate)
7200 (const density)

snake

-60 -40 -20 0 20

Percent improvement versus 64KB

128KB
32KB
16KB

cello-usr
128KB
32KB
16KB

oltp-log
128KB
32KB
16KB

oltp-db
128KB
32KB
16KB

snake

HP AutoRAID hierarchical storage system • 23

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.

4.3 Data layout

Since the system allows blocks to be remapped, blocks that the host system
has tried to lay out sequentially will often be physically discontiguous. To see
how bad this problem could get, we compared the performance of the system
when hostLUN address spaces were initially laid out completely linearly on
disk (as a best case) and completely randomly (as a worst case). Figure 9
shows the difference between the two layouts: there is a modest improvement
in performance in the linear case compared with the random one. This
suggests that theRB size is large enough to limit the impact of seek delays for
sequential accesses.

4.4 Mirrored storage class read selection algorithm

When the front-end read cache misses on anRB that is stored in the mirrored
storage class, the array can choose to read either of the stored copies. The
baseline system selects the copy at random in an attempt to avoid making one
disk a bottleneck. However, there are several other possibilities:

• strictly alternating between disks (alternate);
• attempting to keep the heads on some disks near the outer edge while

keeping others near the inside (inner/outer);
• using the disk with the shortest queue (shortest queue);
• using the disk that can reach the block first, as determined by a shortest-

positioning-time algorithm [Jacobson and Wilkes 1991; Seltzer et al.
1990] (shortest seek).

Further, the policies can be “stacked,” using first the most aggressive policy
but falling back to another to break a tie. In our experiments,random was
always the final fallback policy.

Figure 9 shows the results of our investigations into the possibilities. By using
shortest queue as a simple load-balancing heuristic, performance is improved

Fig. 9. Effects of data layout and mirrored storage class read disk selection policy on performance.

read disk selection policydata layout

0 10 20 30

Percent improvement for sequential layout
versus random layout

cello-usr

oltp-log

oltp-db

snake

-5 0 5 10

Percent improvement versus random

Shortest seek + queue
Shortest seek

Shortest queue
Inner/outer

Alternate
cello-usr

Shortest seek + queue
Shortest seek

Shortest queue
Inner/outer

Alternate
oltp-log

Shortest seek + queue
Shortest seek

Shortest queue
Inner/outer

Alternate
oltp-db

Shortest seek + queue
Shortest seek

Shortest queue
Inner/outer

Alternate
snake

24 • John Wilkes et al.

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.

by an average of 3.3% overrandom for these workloads.Shortest seek
performed 3.4% better thanrandom on the average, but it is much more
complex to implement because it requires detailed knowledge of disk head
position and seek timing.

Static algorithms such asalternate and inner/outer sometimes perform better
thanrandom but sometimes interact unfavorably with patterns in the workload
and decrease system performance.

We note in passing that these differences do not show up under micro-
benchmarks (of the type reported in Figure 7) because the disks are typically
always driven to saturation and do not allow such effects to show through.

4.5 Write cache overwrites

We investigated several policy choices for managing theNVRAM write cache.
The baseline system, for instance, did not allow one write operation to
overwrite dirty data already in cache; instead, the second write would block
until the previous dirty data in the cache had been flushed to disk. As
Figure 10 shows, allowing overwrites had a noticeable impact on most of the
workloads. It had a huge impact on theOLTP-log workload, improving its
performance by a factor of 5.3. We omitted this workload from the graph for
scaling reasons.

4.6 Hole-plugging during RB demotion

RBs are typically written toRAID 5 for one of two reasons: demotion from
mirrored storage, or garbage collection. During normal operation, the system
creates holes inRAID 5 by promotingRBs to the mirrored storage class. In
order to keep space consumption constant, the system later demotes (other)
RBs toRAID 5. In the default configuration, HP AutoRAID uses logging writes
to demoteRBs to RAID 5 quickly, even if the demotion is done during idle
time; these demotions do not fill the holes left by the promotedRBs. To reduce
the work done by theRAID 5 cleaner, we allowedRBs demoted during idle
periods to be written toRAID 5 using hole-plugging. This optimization

Fig. 10. Effect of allowing write cache overwrites on performance.

0 5 10 15

Percent improvement for overwrites
versus no overwrites

cello-usr

oltp-db

snake

HP AutoRAID hierarchical storage system • 25

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.

reduced the number ofRBs moved by theRAID 5 cleaner by 93% for the
cello-usr workload and by 96% forsnake, and improved meanI/O time for user
I/Os by 8.4% and 3.2%.

5. SUMMARY

The HP AutoRAID technology works extremely well, providing performance
close to that the of a nonredundant disk array across many workloads. At the
same time, it provides full data redundancy and can tolerate failures of any
single array component.

It is very easy to use: one of the authors of this paper was delivered a system
without manuals a day before a demonstration, and had it running a trial
benchmark five minutes after getting it connected to his completely
unmodified workstation. The product team has had several such experiences
in demonstrating the system to potential customers.

The HP AutoRAID technology is not a panacea for all storage problems: there
are workloads that do not suit its algorithms well, and environments where the
variability in response time is unacceptable. Nonetheless, it is able to adapt to
a great many of the environments that are encountered in real life, and it
provides an outstanding general-purpose storage solution where availability
matters.

The first product based on the technology, the HP XLR1200 Advanced Disk
Array, is now available.

Acknowledgments

We would like to thank our colleagues in HP’s Storage Systems Division.
They developed the HP AutoRAID system architecture and the product
version of the controller, and were the customers for our performance and
algorithm studies. Many more people put enormous amounts of effort into
making this program a success than we can possibly acknowledge directly by
name; we thank them all.

Chris Ruemmler wrote theDB benchmark used for the results in section 3.2.

This paper is dedicated to the memory of our late colleague Al Kondoff, who
helped establish the collaboration that produced this body of work.

References
AKYÜREK, S., AND SALEM, K. 1993. Adaptive block rearrangement. Tech. Rep. CS–TR–2854.1,

Department of Computer Science, Univ. of Maryland, College Park, Maryland.

BAKER, M., ASAMI, S., DEPRIT, E., OUSTERHOUT, J.,AND SELTZER, M. 1992. Non-volatile memory
for fast, reliable file systems. InProceedings of 5th International Conference on Architectural
Support for Programming Languages and Operating Systems. Comput. Arch. News 20, Oct., 10–
22.

26 • John Wilkes et al.

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.

BLACKWELL , T., HARRIS, J.,AND SELTZER, M. 1995. Heuristic cleaning algorithms in log-structured
file systems. InProceedings of USENIX 1995 Technical Conference on UNIX and Advanced
Computing Systems. USENIX Association, Berkeley, Calif., 277–88.

BURKES, T., DIAMOND, B., AND VOIGT, D. 1995.Adaptive hierarchical RAID: a solution to theRAID

5 write problem. Part No. 5963–9151. Hewlett-Packard Storage Systems Division, Boise, Idaho.

BURROWS, M., JERIAN, C., LAMPSON, B., AND MANN, T. 1992. On-line data compression in a log-
structured file system. InProceedings of 5th International Conference on Architectural Support
for Programming Languages and Operating Systems. Comput. Arch. News 20,Oct., 2–9.

CAO, P., LIM, S. B., VENKATARAMAN , S., AND WILKES, J. 1994. The TickerTAIP parallel RAID
architecture. InACM Trans. Comput. Syst. 12,3 (Aug.), 236–269.

CARSON, S.,AND SETIA, S. 1992. Optimal write batch size in log-structured file systems. InUSENIX
Workshop on File Systems.USENIX Association, Berkeley, Calif., 79–91.

CATE, V. 1990. Two levels of filesystem hierarchy on one disk. Tech. Rep. CMU–CS–90–129.
Carnegie-Mellon Univ., Pittsburgh, Penn.

CHAO, C., ENGLISH, R., JACOBSON, D., STEPANOV, A., AND WILKES, J. 1992. Mime: a high
performance storage device with strong recovery guarantees. Tech. Rep. HPL–92–44. Hewlett-
Packard Laboratories, Palo Alto, Calif.

CHEN, P. 1973. Optimal file allocation in multi-level storage hierarchies. InProceedings of National
Computer Conference. 277–82.

CHEN, P. M.,AND LEE, E. K. 1993. Striping in a RAID level-5 disk array. Tech. Rep. CSE–TR–181–
93. The Univ. of Michigan, Ann Arbor, Mich.

CHEN, P. M., LEE, E. K., GIBSON, G. A., KATZ, R. H., AND PATTERSON, D. A. 1994. RAID: high-
performance, reliable secondary storage. InACM Comput. Surv. 26,2 (June), 145–85.

CLEGG, F. W., HO, G. S.-F., KUSMER, S. R.,AND SONTAG, J. R. 1986. The HP-UX operating system
on HP Precision Architecture computers. InHewlett-Packard Journal 37,12 (Dec.). Hewlett-
Packard Company, Palo Alto, Calif., 4–22.

COHEN, E. I., KING, G. M.,AND BRADY, J. T. 1989. Storage hierarchies. InIBM Systems Journal 28,
1. IBM Corp., Armonk, New York, 62–76.

DEC. 1993. POLYCENTER storage management for OpenVMS VAX systems. Digital Equipment
Corp., Maynard, Mass.

DE JONGE, W., KAASHOEK, M. F., AND HSIEH, W. C. 1993. The Logical Disk: a new approach to
improving file systems. InProceedings of 14th ACM Symposium on Operating Systems
Principles. ACM, New York, 15–28.

DESHPANDE, M. B., AND BUNT, R. B. 1988. Dynamic file management techniques. InProceedings
of 7th IEEE Phoenix Conference on Computers and Communication.IEEE, New York, 86–92.

DUNPHY, R. H. JR., WALSH, R., BOWERS, J. H.,AND RUDESEAL, G. A. 1991. Disk drive memory. U.
S. Patent 5,077,736; filed 13 Feb. 1990, granted 31 December 1991.

ENGLISH, R. M.,AND STEPANOV, A.A. 1992. Loge: a self-organizing storage device. InProceedings
of USENIX Winter’92 Technical Conference. USENIX Association, Berkeley, Calif., 237–251.

EPOCH SYSTEMS INC. 1988. Mass storage: server puts optical discs on line for workstations. In
Electronics, November.

EWING, J. 1993.RAID: an overview. Part No. W I7004-A 09/93. Storage Technology Corporation,
Louisville, Colo. Available as http://www.stortek.com:80/StorageTek/raid.html.

FLOYD, R. A., AND SCHLATTER ELLIS, C. 1989. Directory reference patterns in hierarchical file
systems. InIEEE Trans. Know. Data Eng. 1,2 (June), 238–247.

HP AutoRAID hierarchical storage system • 27

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.

GEIST, R., REYNOLDS, R., AND SUGGS, D. 1994. Minimizing mean seek distance in mirrored disk
systems by cylinder remapping. InPerformance Evaluation 20,1–3 (May), 97–114.

GELB, J. P. 1989. System managed storage. InIBM Systems Journal 28,1. IBM Corp., Armonk, New
York, 77–103.

GOLDING, R., STAELIN, C., SULLIVAN , T., AND WILKES, J. 1994. “Tcl cures 98.3% of all known
simulation configuration problems” claims astonished researcher! InProceedings of Tcl/Tk
Workshop. Available as Tech. Rep. HPL–CCD–94–11, Concurrent Computing Department,
Hewlett-Packard Laboratories, Palo Alto, Calif.

GOLDING, R., BOSCH, P., STAELIN, C., SULLIVAN , T., AND WILKES, J. 1995. Idleness is not sloth. In
Proceedings of USENIX 1995 Technical Conference on UNIX and Advanced Computing Systems.
USENIX Association, Berkeley, Calif., 201–212.

GRAY, J. 1990. A census of Tandem system availability between 1985 and 1990. Tech. Rep. 90.1.
Tandem Computers Incorporated, Cupertino, Calif.

HENDERSON, R. L., AND POSTON, A. 1989. MSS-II and RASH: a mainframe Unix based mass
storage system with a rapid access storage hierarchy file management system. InProceedings of
USENIX Winter 1989 Conference. USENIX Association, Berkeley, Calif., 65–84.

HOLLAND, M., AND GIBSON, G.A. 1992. Parity declustering for continuous operation in redundant
disk arrays. InProceedings of 5th International Conference on Architectural Support for
Programming Languages and Operating Systems. Comput. Arch. News 20, Oct., 23–35.

JACOBSON, D. M., AND WILKES, J. 1991. Disk scheduling algorithms based on rotational position.
Tech. Rep. HPL–CSP–91–7. Hewlett-Packard Laboratories, Palo Alto, Calif.

KATZ, R. H., ANDERSON, T. E., OUSTERHOUT, J. K.,AND PATTERSON, D. A. 1991. Robo-line storage:
low-latency, high capacity storage systems over geographically distributed networks. UCB/CSD
91/651. Computer Science Div., Department of Electrical Engineering and Computer Science,
University of California at Berkeley, Berkeley, Calif.

KOHL, J. T., STAELIN, C., AND STONEBRAKER, M. 1993. HighLight: using a log-structured file
system for tertiary storage management. InProceedings of Winter 1993 USENIX. USENIX
Association, Berkeley, Calif., 435–447.

LAWLOR, F. D. 1981. Efficient mass storage parity recovery mechanism. InIBM Technical Discl.
Bulletin 24, 2 (July). IBM Corp., Armonk, New York, 986–987.

MAJUMDAR, S. 1984.Locality and file referencing behaviour: principles and applications. MSc
thesis published as Tech. Rep. 84–14. Department of Computer Science, University of
Saskatchewan, Saskatoon, Saskatchewan.

MCDONALD, M. S., AND BUNT, R. B. 1989. Improving file system performance by dynamically
restructuring disk space. InProceedings of Phoenix Conference on Computers and
Communication. IEEE, New York, 264–269.

MCNUTT, B. 1994. Background data movement in a log-structured disk subsystem.IBM J. Res. and
Development 38,1. IBM Corp., Armonk, New York, 47–58.

MENON, J.,AND KASSON, J. 1989. Methods for improved update performance of disk arrays. Tech.
Rep. RJ 6928 (66034). IBM Almaden Research Center, San Jose, Calif. Declassified 21 Nov.
1990.

MENON, J., AND KASSON, J. 1992. Methods for improved update performance of disk arrays. In
Proceedings of 25th International Conference on System Sciences. Vol. 1. IEEE, New York, 74–
83.

28 • John Wilkes et al.

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.

MENON, J., AND MATTSON, D. 1992. Comparison of sparing alternatives for disk arrays. In
Proceedings of 19th International Symposium on Computer Architecture. ACM, New York, 318–
329.

MENON, J.,AND COURTNEY, J. 1993. The architecture of a fault-tolerant cached RAID controller. In
Proceedings of 20th International Symposium on Computer Architecture. ACM, New York, 76–
86.

MILLER, E. L. 1991. File migration on the Cray Y-MP at the National Center for Atmospheric
Research. UCB/CSD 91/638, Computer Science Division, Department of Electrical Engineering
and Computer Science, University of California at Berkeley, Berkeley, Calif.

MISRA, P. N. 1981. Capacity analysis of the mass storage system. InIBM Systems Journal 20,3. IBM
Corp., Armonk, New York, 346–361.

MOGI, K., AND KITSUREGAWA, M. 1994. Dynamic parity stripe reorganizations for RAID5 disk
arrays. InProceedings of Parallel and Distributed Information Systems International Conference.
IEEE, New York, 17–26.

OUSTERHOUT, J.,AND DOUGLIS, F. 1989. Beating the I/O bottleneck: a case for log-structured file
systems. InOperating Systems Review 23,1 (Jan.), 11–27.

OUSTERHOUT, J. K. 1994.Tcl and the Tk toolkit, Professional Computing series. Addison-Wesley,
Reading, Mass. and London.

PARK, A., AND BALASUBRAMANIAN , K. 1986. Providing fault tolerance in parallel secondary storage
systems. Tech. Rep. CS–TR–057–86. Department of Computer Science, Princeton University,
Princeton, New Jersey.

PATTERSON, D. A., GIBSON, G.,AND KATZ, R. H. 1988. A case for redundant arrays of inexpensive
disks (RAID). InProceedings of 1988 ACM SIGMOD International Conference on Management
of Data.ACM, New York.

PATTERSON, D. A., CHEN, P., GIBSON, G., AND KATZ, R. H. 1989. Introduction to redundant arrays
of inexpensive disks (RAID). In Spring COMPCON ’89. IEEE, New York, 112–117.

ROSENBLUM, M., AND OUSTERHOUT, J. K. 1992. The design and implementation of a log-structured
file system. InACM Trans. on Comput. Syst. 10,1 (Feb.), 26–52.

RUEMMLER, C., AND WILKES, J. 1991. Disk shuffling. Tech. Rep. HPL–91–156, Hewlett-Packard
Laboratories, Palo Alto, Calif.

RUEMMLER, C., AND WILKES, J. 1993. UNIX disk access patterns. InProceedings of Winter 1993
USENIX. USENIX Association, Berkeley, Calif., 405–420.

RUEMMLER, C., AND WILKES, J. 1994. An introduction to disk drive modeling. InIEEE Computer
27,3 (March), 17–28.

SCSI. 1991. Secretariat, Computer and Business Equipment Manufacturers Association 1991.Draft
proposed American National Standard for information systems – Small Computer System
Interface-2 (SCSI-2), Draft ANSI standard X3T9.2/86-109., 2 February 1991 (revision 10d).

SELTZER, M., CHEN, P., AND OUSTERHOUT, J. 1990. Disk scheduling revisited. InProceedings of
Winter 1990 USENIX Conference.USENIX Association, Berkeley, Calif., 313–323.

SELTZER, M., BOSTIC, K., MCKUSICK, M. K., AND STAELIN, C. 1993. An implementation of a log-
structured file system for UNIX. InProceedings of Winter 1993 USENIX. USENIX Association,
Berkeley, Calif., 307–326.

SELTZER, M., SMITH, K. A., BALAKRISHNAN , H., CHANG, J., MCMAINS, S., AND PADMANABHAN ,
V. 1995. File system logging versus clustering: a performance comparison. InConference
Proceedings of USENIX 1995 Technical Conference on UNIX and Advanced Computing Systems.
USENIX Association, Berkeley, Calif., 249–264.

HP AutoRAID hierarchical storage system • 29

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.

SIENKNECHT, T. F., FRIEDRICH, R. J., MARTINKA , J. J., AND FRIEDENBACH, P. M. 1994. The
implications of distributed data in a commercial environment on the design of hierarchical storage
management. InPerformance Evaluation 20,1–3 (May). North-Holland, Amsterdam, 3–25.

SMITH, A. J. 1981. Optimization of I/O systems by cache disks and file migration: a summary. In
Performance Evaluation 1.North-Holland, Amsterdam, 249–262.

STK. 1995.Iceberg 9200 disk array subsystem. Storage Technology Corporation, Louisville, Colo.
Available as http://www.stortek.com:80/StorageTek/iceberg.html.

TAUNTON, M. 1991. Compressed executables: an exercise in thinking small. In Proceedings of
Summer USENIX. USENIX Association, Berkeley, Calif., 385–403.

